2018年7月7日数学试卷

满分: 100分 考试时间: 90分钟

-、选择题(每小题 5 分,共 8 小题,共 40 分;每小题只有一个选项符合)

1. 己知全集 $U = \mathbf{R}$,集合 $A = \{x | x < 2\}$, $B = \{x | \lg(x - 1) > 0\}$,则 $A \cap (C_U B) = ($

A.
$$\{x | 1 < x < 2\}$$

B.
$$\{x | 1 \le x < 2\}$$

C.
$$\{x | x < 2\}$$

D.
$$\{x | x \le 1\}$$

2. 已知复数 : $z = \frac{2+i}{1-i}$ (i 为虚数单位) ,那么 z 的共扼复数为 (

A.
$$\frac{1}{2} - \frac{3}{2}i$$
 B. $\frac{3}{2} + \frac{3}{2}i$ C. $\frac{1}{2} + \frac{3}{2}i$ D. $\frac{3}{2} - \frac{3}{2}i$

B.
$$\frac{3}{2} + \frac{3}{2}i$$

C.
$$\frac{1}{2} + \frac{3}{2}i$$

D.
$$\frac{3}{2} - \frac{3}{2}i$$

3. 已知向量 \vec{a} , \vec{b} 满足 $|\vec{a}|=1$, $|\vec{b}|=4$,且 $\vec{a}\cdot\vec{b}=2$,则 \vec{a} 与 \vec{b} 的夹角的大小为 (

A.
$$\frac{\pi}{6}$$

$$B.\frac{\pi}{4}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{\pi}{2}$$

4. 为了得到函数 $y = \sin\left(2x + \frac{\pi}{3}\right)$ 的图象,只需把函数 $y = \sin 2x$ 的图象上所有的点 (

A. 向左平行移动
$$\frac{\pi}{4}$$
个单位长度

B. 向右平行移动
$$\frac{\pi}{3}$$
 个单位长度

C. 向左平行移动
$$\frac{\pi}{3}$$
个单位长度

D. 向右平行移动
$$\frac{\pi}{6}$$
 个单位长度

5. 过点 (1,1) 的直线与圆 $(x-2)^2 + (y-3)^2 = 9$ 相交于 A, B 两点,则 |AB| 的最小值为 (

A.
$$2\sqrt{3}$$

C.
$$2\sqrt{5}$$

6. 从分别写有 1, 2, 3, 4, 5 的 5 张卡片中随机抽取 1 张, 放回后再随机抽取 1 张, 则抽得的第一 张卡片上的数大于第二张卡片上的数的概率为(

A.
$$\frac{1}{10}$$

B.
$$\frac{1}{5}$$

C.
$$\frac{3}{10}$$

D.
$$\frac{2}{5}$$

7. 已知等比数列 $\{a_n\}$ 中, $a_2=1$,则其前 3 项的和 S_3 的取值范围是 (

A.
$$(-\infty, -1]$$

B.
$$(-\infty, 0) \cup (1, +\infty)$$

C.
$$[3, +\infty)$$

D.
$$(-\infty, -1] \cup [3, +\infty)$$

8. 己知函数 $f(x) = -x^3 + ax^2 - x - 1$ 在 $(-\infty, +\infty)$ 上是单调函数,则实数 a 的取值范围是 (

A.
$$\left(-\infty, -\sqrt{3}\right] \cup \left[\sqrt{3}, +\infty\right)$$

B.
$$[-\sqrt{3}, \sqrt{3}]$$

C.
$$\left(-\infty, -\sqrt{3}\right) \cup \left(\sqrt{3}, +\infty\right)$$

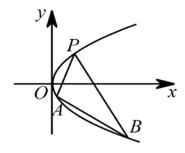
D.
$$\left(-\sqrt{3},\sqrt{3}\right)$$

二、填空题(每小题 4 分,共 4 小题,共 16 分)

9. 曲线 $y = 4x - x^3$ 在点 (-1, -3) 处的切线方程是 _____.

10. 设 x, y 满足约束条件 $\begin{cases} x + y \le 1, \\ y \le x, \\ y > 0. \end{cases}$ 则 z = 2x + y 的最大值是 _____.

11. 若 $\cos(\alpha + \pi) = \frac{4}{5}$,则 $\sin(\alpha + \frac{3\pi}{2}) =$ _____.


12. 设椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左右焦点为 F_1, F_2 ,过 F_2 作 x 轴的垂线与 C 交于 A, B 两点, F_1B 与 y 轴交于点 D,若 $AD \perp F_1B$,则椭圆 C 的离心率等于 ______.

三、解答题(共4小题;共44分)

- 13. (10 分)在 $\triangle ABC$ 中,角 A, B, C 的对边分别为 a, b, c,已知 $2\cos(B-C)+1=4\cos B\cos C$.
 - (1) 求*A*;
 - (2) 若 $a = 2\sqrt{7}$, \triangle ABC 的面积为 $2\sqrt{3}$, 求 b + c.

- 14. (10 分)设 $\{a_n\}$ 是公比大于 1 的等比数列, S_n 为数列 $\{a_n\}$ 的前 n 项和.已知 $S_3=7$,且 a_1+3 , $3a_2$, a_3+4 构成等差数列.
 - (1) 求数列 $\{a_n\}$ 的通项;
 - (2) 令 $b_n = \log_2 a_{3n+1}$, $n = 1,2,\cdots$, 求数列 $\{b_n\}$ 的前 n 项和 T_n .

- 15. (12 分)如图,抛物线关于 x 轴对称,它的顶点在坐标原点,点 P(1,2), $A(x_1,y_1)$, $B(x_2,y_2)$ 均在抛物线上.
 - (1) 写出该抛物线的方程及其准线方程.
 - (2) 当 PA 与 PB 的斜率存在且倾斜角互补时,求 $y_1 + y_2$ 的值及直线 AB 的斜率.

- 16. (12 分) 已知函数 $f(x) = \ln x + bx c$, f(x) 在点 (1, f(1)) 处的切线方程为 x + y + 4 = 0.
 - (1) 求 f(x) 的解析式;
 - (2) 求 f(x) 的单调区间;
 - (3) 若在区间 $\left[\frac{1}{2},3\right]$ 内,恒有 $f(x) \geq 2\ln x + kx$ 成立,求 k 的取值范围.